$\qquad$

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $\left\{x_{n}\right\}$ br a sequence in $\ell^{1}(\mathbb{N})$. Prove that

$$
\sum_{k=1}^{\infty} x_{n, k} y_{k} \rightarrow 0 \text { as } n \rightarrow \infty
$$

for every $y \in c_{0}$ if and only if $\sup \left\{\left\|x_{n}\right\|_{1}: n \geq 1\right\}<\infty$ and $x_{n, k} \rightarrow 0$ as $n \rightarrow \infty$ for every $k \geq 1$.
2. Let $(X, \Omega, \mu)$ be a $\sigma$-finite measure space and $\left\{f_{n}\right\} \in L^{1}(\Omega)$. Show that

$$
\int_{\Omega} f_{n} g d \mu \rightarrow 0 \text { as } n \rightarrow \infty
$$

for every $g \in L^{\infty}(\Omega)$ if and only if $\sup \left\{\left\|f_{n}\right\|_{1}: n \geq 1\right\}<\infty$ and

$$
\int_{E} f_{n} d \mu \rightarrow 0 \text { as } n \rightarrow \infty
$$

for every $E \subset \Omega$.
3. Let $X$ be a Banach space and $A \in L(X)$. Suppose $A$ has the property that $A^{n}=0$ for some $n$. Prove that $\sigma(A)=\{0\}$.
4. Let $X$ be a compact space and $f \in C(X)$. Prove that $\sigma(f)=f(X)$.
5. Define the following Hilbert spaces:

$$
\mathcal{H}_{1}=\left\{x \in \ell^{2}(\mathbb{N}): \sum_{k=1}^{\infty} \frac{1}{k^{2}}\left|x_{k}\right|^{2}<\infty\right\} \text { and } \mathcal{H}_{2}=\left\{x \in \ell^{2}(\mathbb{N}): \sum_{k=1}^{\infty} \frac{1}{k^{3}}\left|x_{k}\right|^{2}<\infty\right\}
$$

These are so-called weighted $\ell^{2}$-spaces. Let $c$ be a real number such that $0<c \leq 1$ and define the following bounded operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ by:

$$
(T x)_{k}=\sum_{n=1}^{k} \frac{c^{k-1-n}}{n^{2}} x_{n}
$$

Prove that $T$ is a compact operator.
6. Define the following operator on $L^{2}[-\pi, \pi]$ by:

$$
A=-\frac{d^{2}}{d x^{2}}
$$

whose domain is

$$
\begin{aligned}
\mathcal{D} & =\operatorname{dom}(A) \\
& =\left\{f \in C^{2}(-\pi, \pi) \cap C[-\pi, \pi]: f^{\prime}, f^{\prime \prime} \in L^{2}[-\pi, \pi], f(-\pi)=f(\pi), f^{\prime}(-\pi)=f^{\prime}(\pi)\right\}
\end{aligned}
$$

Prove that $A$ is an unbounded self-adjoint operator. Moreover compute $\sigma(A)$ and classify the point, continuous and residual spectra.
7. Let $\mathcal{H}$ be a Hilbert space and let $A$ be a self-adjoint(not necessarily bounded) operator defined on $\mathcal{H}$ with densely defined domain in $\mathcal{H}$. Prove that

$$
\lim _{t \rightarrow \infty} e^{-t A^{2}}=0
$$

